Hecke eigenforms with rational coefficients and complex multiplication

نویسنده

  • Matthias Schütt
چکیده

We prove that, assuming GRH, there are only finitely many newforms with rational Fourier coefficients and complex multiplication for fixed weight up to twisting. We produce tables of such forms for weights 3 and 4, where this finiteness holds unconditionally. We also comment on geometric realizations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hardness of Computing an Eigenform Eric Bach and Denis Charles

The Fourier coefficients of modular forms encode very interesting arithmetic data. For example, divisor sums, partition numbers, trace of Frobenius of the reduction modulo primes of an elliptic curve over Q, and more generally, trace of Frobenius of many Galois representations of dimension 2 over finite fields (this being a conjecture of Serre) are all known to be, or conjectured to be, Fourier...

متن کامل

Fourier Coefficients of Hecke Eigenforms

We provide systematic evaluations, in terms of binary quadratic representations of 4p, for the p-th Fourier coefficients of each member f of an infinite class C of CM eigenforms. As an application, previously conjectured evaluations of three algebro-geometric character sums can now be formulated explicitly without reference to eigenforms. There are several non-CM newforms that appear to share s...

متن کامل

Fe b 20 16 SIGN CHANGES OF FOURIER COEFFICIENTS OF MODULAR FORMS OF HALF INTEGRAL WEIGHT , 2

In this paper, we investigate the sign changes of Fourier coefficients of half-integral weight Hecke eigenforms and give two quantitative results on the number of sign changes.

متن کامل

Sign Changes of Coefficients of Half Integral Weight Modular Forms

For a half integral weight modular form f we study the signs of the Fourier coefficients a(n). If f is a Hecke eigenform of level N with real Nebentypus character, and t is a fixed square-free positive integer with a(t) 6= 0, we show that for all but finitely many primes p the sequence (a(tp2m))m has infinitely many signs changes. Moreover, we prove similar (partly conditional) results for arbi...

متن کامل

On a real multiplication problem

An explicit class field theory for the real quadratic number fields is developed. The construction is based on the theory of the Hecke eigenforms (of weight two) and the notion of a pseudo-lattice with the real multiplication introduced by Yu. I. Manin. In particular, it is shown how to extend the domain of definition of the j-invariant to the quadratic irrational points at the boundary of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006